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Abstract - -  Dynamic time step estimates were determined for four single step numerical schemes in one dimension, and three 
finite element and three finite difference single step schemes in two dimensions. Unlike other stability-based time step criteria, 
the dynamic time step estimates are functions of grid size, material properties, and boundary conditions. For a certain problem, 
an initial coarse mesh is required to determine its lowest eigenvalue. The problem needs to be re-meshed and solved with the 
new mesh to satisfy a desired accuracy. Correlations between the dynamic time step and the stability criteria were conducted. A 
stability criteria equivalence was defined as the stability criteria that gives a time step estimate equivalent to the dynamic time step 
estimate. For the range of problems solved and for the central difference time stepping scheme, the stability criteria equivalence 
ranges from 0.5 to 2.7 for one-dimensional problems and 0.46 to 9.13 for two-dimensional problems, depending on the problem 
boundary conditions. The study shows that, unlike the dynamic time step estimate, the stability criteria used for selecting a time 
step is not adequate, since it does not change with the problem boundary conditions. © Elsevier, Paris. 
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Resume - -  Comparaison du pas de temps dynamique et du critere de stabilite pour I'equation de diffusion de la chaleur. 
L'~valuation du pas de temps dynamique a ~t~ effectu~e pour quatre schemas num~riques en g~om~trie monodimensionnelle, 
ainsi que pour trois schemas 5. la fois d'elements finis et de differences finies en gfiom~trie bidimensionnelle. Contrairement aux 
criteres de dfitermination du pas de temps bas~s sur la stabilitY, I'~valuation du pas de temps dynamique est fonction de la 
dimension du maillage, des propriet~s du matfiriau et des conditions aux frontieres. Pour un probl~me donne, on doit d'abord 
utiliser un maillage grossier pour d~terminer la valeur propre la plus faible. Pour des r~sultats precis, le domaine doit fitre ensuite 
remaill~ et la solution reprise avec le nouveau maillage. On a realise une correlation entre le pas de temps dynamique et le critere 
de stabilitY. Un crit~re de stabilitfi fiquivalent a fitfi dfifini comme ~tant le crit~re de stabilite donnant une estimation du pas de 
temps fiquivalente a celle du pas de temps dynamique. Pour la gamme de probl~mes traitfis et pour une resolution en differences 
centrees, le critere de stabilit~ equivalent se situe entre 0,5 et 2,7 pour des probl~mes ~ une dimension et entre 0,46 et 9,13 pour 
des problemes 5. deux dimensions, dfipendant des conditions aux fronti~res du probl~me. L'fitude a montrfi que, contrairement 5. 
I'~valuation du pas de temps dynamique, le crit~re de stabilitfi n'est pas adfiquat pour le choix du pas de temps, puisque celui-ci 
ne change pas avec les conditions limites du probl~me. © Elsevier, Paris. 
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1. INTRODUCTION 

The t ime-dependent heat conduction in solids is 
governed by the parabolic diffusion equation: 

~U c - ~  = k V  2 U (1) 

* Correspondence and reprints. 
mohtar¢~een.purdue.edu 

where c is the capacitance coefficient, k is tile conduc- 
tivity coefficient and U is the unknown temperature.  

Applying filfite element (FE) or finite difference (FD) 
numerical methods to (1), transforms the time and 
space-dependent partial differential equation (PDE) 
into a t ime-dependent system of ordinar3 differential 
equations (ODEs): 

[ C ] ~  + [K]{U} - {F} = {0} (2) 
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where [C] is the capaci tance mat r ix  coming fl-oin the 
t ransient  term, [K] is the stiffness matr ix  coming 
from the par t ia l  derivative with respect to spat ial  
coordinants,  and {F} is tile forcing function. Since 
there is no source te rm in the PDE, {F} is zero before 
the boundary  conditions are incorporated.  The system 
of ordinary  differential equations in (2) can be solved 
analyt ica l ly  using modal  analysis or numerically using 
F E  or FD methods.  Despite the fact tha t  many authors  
have presented and discussed solution procedures for 
tile system of ODEs (2), there is still a lot of art  
and experience involved in selecting tile proper  scheme 
and the t ime step tha t  is needed to reach an accurate 
solution. The numerical  solution for the ODEs using 
single step schemes is defined as: 

([c]  + o a t  [ K ] ) { u } ~ + ~  : ([c]  - (1 - o) At  [K]) {u}~  
+ / , t  (o {F}~+d~ + (1 - 0 ) { F b )  (3) 

where 0 = 0, 0.5.0.67, and 1 for Euler, central difference, 
Galerkin,  and backward difference schemes, respectively. 
The central  difference or the Crank-Nickolson scheme 
is second order accurate ill t ime compared to tile other 
schemes tha t  are first order accurate  in time. 

Numerical  integrat ion in space and t ime of the time- 
dependent  par t ia l  differential equation (1) produces 
a system of algebraic equations (3). A common 
problem during the numerical solution of these algebraic 
equations is to specify a t ime step tha t  adequately and 
efi3ciently solves tile problem. Several cri teria are used 
to select the proper  t ime step. Al though the accuracy 
of the solution reaches its highest when the t ime step 
(At) approaches zero, an es t imate  of the t ime step 
tha t  solves the problem within an error tolerance is 
useful but  has not been found in a form for pract ical  
use. Smith [1] discusses the explicit  Euler 's  scheme 
for solving the non-dimensional  form of the PDE. 
He rearranged tile difference equations, defined and 
named r as A t / ( A x ) 9 .  where At  is the t ime step and 
Ax  the grid space. During the discussion on stability, 
Smith s ta ted  tha t  the explicit  scheme is stable for 
'r' values less than 0.5 and tha t  the implicit  Crank- 
Nickolson method has the advantage of being stable for 
all values of r. However, Snfith recommends an 'r; value 
of one for an accurate solution for the Crank-Nickolson 
scheme. He discussed convergence and stabi l i ty  for some 
t ime s tepping schemes and gave a t ime step expression 
tha t  satisfies both  criteria. No criterion was given for 
selecting t ime a step based on the accuracy of the 
solution. The r term defined by Smith does not include 
the mater ia l  propert ies  since the cf,/k term was defined 
as unity. 

Allaire [2] defined stabi l i ty  in terms of the Courant  
number (C), which is siinilar to the ' r '  value defined 
by Smith but  it includes the mater ia l  properties.  To 
i l lustrate stable and non-stable schemes, Allaire defined 
an oscil latory stable scheme as having an oscillation 
tha t  eventually dies out with tile solution converging 
to the correct s teady s tate  values. Allaire showed the 

following criteria to be true for the single t ime step 
scheines: 

0 < C_< 0.25 no oscillation 

0.25 < C < 0.5 oscillation but  stable 

0.5 < C unstable (guler ' s  method only). 

Allaire presented some examples to i l lustrate what 
he meant by his classifications. However, his solutions 
have no indication of instabil i ty for values of C' < 0.5. 
Allaire discussed the weighted hybrid explicit implicit  
schemes defined in terms of a parameter  theta,  where, 
0 ~< 0 ~< 1. For 0 = 0, the scheme reduces to tile explicit 
method and has the s tabi l i ty  criterion of C < 0.5. He 
showed tha t  tile Crank-Nickolson and tile flllly implicit  
schemes are accurate for values of C up to 1.335. 

Ja lur ia  and Torrance [3] defined yet another s tabi l i ty  
parameter  sinfilar to Allaire 's  Courant  number; they 
called it the Froude number. Fo. They suggested using 
values of Fo < 0.5 for the implicit scheme, al though the 
lower tile Fo values, tile be t te r  the accuracy. However, 
they did not solve any examples using values of Fo lower 
than  0.5. 

Rushton and Tomlinson [4] used the al ternat ing 
direction approach as a numerical schenm to solve the 
discrit ized algebraic equations. They studied numerical 
s tabi l i ty  for the solution scheme and found that  tile 
Courant  number  tha t  generated accurate tiine step 
values changes with tile problem boundary conditions. 
For a sudden change of pressure head on the boundary, 
the Courant  number should be less than 1.0. For a draw 
down at a well, the Courant  number should be less than 
0.05. For a sudden change in discharge at a well, the 
Courant  number should be less than 0.5. The authors 
suggested a tr ial  and error procedure for selecting the 
opt imal  t ime step value. 

Wil l iams [5] and Fried [6] both  studied the nmnerical 
solutions of the PDE and used the tinle step criterion 
tha t  satisfied s tabi l i ty  requirements. Willianls used a 
term equivalent to the Courant  nulnber and s ta ted 
tha t  it should be less than  0.5. Fried used the s tabi l i ty  
criterion that  the t ime step should be less or equal to 
2 divided by tile maximum eigenvalue of the system 
of ordinary equations. The analyt ical  and numerical 
solution of the PDE requires a knowledge of eigenvalues 
for tile eigenproblem: ([K] - ,~[C]){U} - 0, where [K] is 
the stiffness matr ix,  [C] is the capacitance matrix,  and 
), is the eigenvalue vector. 

Pa tankar  [7] presented a heat  transfer colnputer  
program, CONDUCT.  This program uses the backward 
difference scheme in t ime to solve the problem, but  
Pa tankar  does not discuss selecting a t ime step. 

The reason for the discrepancy of recommending 
different values of the same criterion represents one of 
tile major  l imitat ions to the use of tile s tabi l i ty  criterion 
(such as tile Courant  number,  Froude number or the r 
term as defined by Snfith) for t ime step estimates.  These 
cri teria do not change with the boundary  conditions of 
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the problem being solved. Each of the above authors 
has solved the heat  equation for different boundary  
and initial conditions, and has reeomlnended using a 
different value of the Courant  and Froude numbers 
when solving a problem. 

Tile objective of this s tudy is to compare a dynamic 
t ime step es t imate  tha t  changes with problem boundary  
conditions with a commonly used stabi l i ty  criterion to 
est imate the t ime step. 

2. METHODOLOGY 

2.1. Dynamic t ime step estimate 
equations 

Dynamic functional es t imates  for the t ime step to be 
used in the numerical  solution of field problems using 
the single t ime step schemes were developed based on 
a 5% error tolerance by Mohtar  [8] and Mohtar  and 
Segerlind [9, 10, 11]. The t ime es t imate  equations were 
developed for the unit step change problem through a 
numerical exper imental  procedure by varying the grid 
size and finding the t ime step tha t  accurately integrated 
the problem within the error tolerance. These t ime steps 
were fitted by a power function and a regression equation 
determined the unknown coefficients. The equations 
est imate the t ime step using the number of nodes 
and the lowest eigenvalue of the system of ordinary 
differential equations. The numerical exper imentat ion 
was repeated for the four schemes: forward difference, 
central difference, Galerkin,  and backward difference in 
time, and for the finite element and the finite difference 
methods in space. A coarse grid was generated over 
the solution domain to determine the lowest eigenvalue 
of the system of ordinary  differential equations. This 
parameter  was also used to es t imate  the t ime to 
s teady s tate  and t ime domain sampling points used 
to evaluate the error relative to the analyt ical  solution. 
A finer grid was generated for tile nmnerical solution 
to ensure accuracy. The t ime step es t imate  equations 
were successfully tested and were used to solve problems 
other than those used in their  development.  

The t ime step es t imate  equations for the four single 
time stepping numerical schemes in one dimension are: 

Euler At  ~ N La = 0.27 (4) 

Central  difference At A~ N ha = 1.13 (5) 

Galerkin At  ,M N 3s = 70 (6) 

Backward difference At,M N a9 = 30.6 (7) 

where At  is the t ime step, N is the number of nodes 
in the grid and should be greater than  seven for all 
schemes to reduce spat ial  discri t izat ion error, -'~1 is the 
lowest eigenvalue of the system of ordinary differential 
equations. 

The t ime step est imates for the three finite element, 
and tile three finite difference single t ime stepping 
schemes are: 

Galerkin forward difference 

At)~  N 1"05 = 1.8 for N _> 25 (8) 

Galerkin central difference 

A t A ~ N  ° ~ = 1 . 6  f o r N >  25 (9) 

Galerkin backward difference 

At  A~ N °'~ = 0.05 for N_> 25 (10) 

Forward finite difference 

A t A ~ N  ~ ° ~ = l . 2 f o r N > 9  (11) 

Central  finite difference 

A t , M N  ° ~ = l . 6 f o r N >  9 (12) 

Backward finite difference 

A t ) ~ I N  °~ = 0.05 for N_> 9 (13) 

The first three equations (8 10) use the finite element 
method for space discrit ization, while the last three 
(11 13) use the finite difference for space discrit ization. 
In one-dimension the finite element and the finite 
difference generate similar equations and only one set is 
presented. The Galerkin scheme, representing a 0 value 
of 0.67 is not repor ted for two dimensions. 

2.2. Stability criteria 

Tile s tabi l i ty  cri teria is a common cri teria used in 
the selection of t ime step in t ransient  field problems, 
par t icular ly  heat  transfer, and is defined as: 

k At 

p c Ax  ~ 
- -  < c (14) 

where k, c, and O are mater ial  dependent  parameters  
in the PDE and are often taken as uni ty for simplicity, 
and C is a constant ,  Fried [6]. 

The stabi l i ty  criterion is a function of grid size Ax, 
t ime step At,  and mater ia l  proper ty  k/pc. It  does not 
change with the boundary  conditions. Therefore, the 
t ime step criterion developed using the s tabi l i ty  cri teria 
does not change if the boundary  conditions of the 
problem changed, even though the boundary  conditions 
have an impact  on the dynamics of the problem. The 
speed at which the problem moves to s teady s ta te  is a 
function of tile lowest eigenvalue (,M) tha t  is a function 
of the boundary  conditions [12]. 
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2.3. Time step estimates comparison 

Tile dynamic time step estinlates of equations (4) 
(13) were compared with the stability criteria time 
step estimate of equation (14). Since the dynamic time 
step estimate changes with tile boundary conditions, 
the comparison has to be based on a fixed value of 
~1. Using a Cartesian coordinate with the number of 
nodes on tile z-axis, and the time step on the ?4-axis, 
the stability criteria (equation (14)) plots as a series 
of power curves similar in shape to tile dynamic time 
step equations. For a certain boundary condition, a 
regression fit was performed for each scheme to find the 
optimal stability criteria that  minimizes the difference 
between the two time step estimates, using equation (14) 
and equations (4) (13). The resulting optimal stability 
criterion was defined as tile stability criteria equivalence. 
A sample of the regression for ~ = 9.8 is shown in 
figure i for the Galerkin scheme of equation (6). Similar 
results were produced for the other schemes and various 
~ values. The F o / N  2 in tim figure refers to the time 
step estimate based on tile stability criteria. 
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0.014 

~. 0,012 

0.01 

.~ 0.00fl 

F- 0.006 

0.004 

0.002 

0 
5 10 15 20 

Number Of Nodes 

I-'i-- Theta=0.6667 ~ Fo/NX2 

Figure 1. Comparison between estimated 
stability criteria for the Galerkin scheme. 

time step and 

3. RESULTS 

3.1. One-dimensional problems 

The stability criteria equivalence for the four one- 
dimensional schemes (equations (4) (7) at three values 
of kl are shown in figure 2. The distribution in this 
figure for each curve is symnletric about the central 
difference. Although there is an infinite series of 
such curves, the figure shows important  features and 
characteristics of the comparison between the two time 
step estimate approaches. Tile figure shows that  the 
central difference scheme ( 0 -  0.5) is superior to the 
other schemes. This is because when using the central 
difference time stepping scheme, larger tinle steps 
are permissible for the same accuracy. The difference 
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Figure 2. Stability criteria equivalence and its variation 
with )~l. 

between the central difference schenle and the other 
schelnes is significant. The other important feature is 
tllat tile stability criteria equivalence is not a fixed 
parameter and is not sufficient to describe the dynamic 
behavior of the time-dependent solution of tile parabolic 
equation. In addition, tile difference between stability 
criteria equivalence for each .~1 value is significant, 
especially for the central difference scheme. Figur'e 2 
also shows that  the stability criteria equivalence for 
the backward difference and Euler forward difference 
schemes was tile same. This suggests that  tim two 
schemes have comparable accuracy. This result is not a 
surprise from tile theoretical point of view since both 
schemes stand at equal distance but opposite sides of 
tile center of the approximation donlain in the Mean 
Value Theorem. Tile values also confirm an earlier 
observation that  the Euler and backward difference 
schemes run with parallel accuracy and that there is no 
real advantage in using the backward difference schenle 
t'rom an accuracy point of view. The backward difference 
is inaccurate in the region where the Euler scheme is 
unstable [8]. The values in this figure are within the 
range of recomnlended values of stability criteria given 
in the literature. They also explain why different studies 
reconunend different values of stability criteria. 

3.2. Two-dimensional problems 

Tile dynamic time step estimates for tile six schemes 
(equations (8) (13)), were correlated against the sta- 
bility criteria of equation (14). Similar to tile one- 
diinensional problems, tile stability criteria equivalence 
was determined by solving for the stability criteria that  
minimizes tile sum of absolute differences between tile 
two time steps estimates. Fig~zre 3 shows tile regres- 
sion fit between the Galerkin central difference sehenle 
(GCD) (equations (9) and (14)), in order to find the 
stability criteria equivalence. The comparison in this 
figure is for certain boundary conditions. The tinle step 
estimate of equations (8) (13) are dynamic and change 
with problem boundary conditions as well as grid size 
and material properties. On tile other hand, tile time 
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Figure 3. Finding a stability criteria equivalence through best 
fitting the GCD time step estimate equation and the FR time 
step estimate for a fixed boundary condition and material 
properties, i.e. fixed )~]. 

step estimate using the stability criteria of equation (14) 
is static and changes only with material properties and 
mesh size. This suggests that  for every ~ ,  there exist 
different stability criteria equivalence. 

This study was conducted where ~1 was allowed to 
vary and the regression procedure above was repeated. 
Results of the study are shown in figures ~, and 5. 
These figures represent different views of the same data  
and suggest that  the finite element and finite difference 
methods have very similar stability criteria equivalence, 
and hence, similar accuracy. They also suggest that  
the central difference schemes have the largest stability 
criteria equivalence and are more accurate than the 
other schemes. The backward difference and forward 
difference schemes produce similar stability criteria 
equivalence suggesting similar accuracy. The backward 
difference and forward difference schemes are clustered 
together and can almost be combined into single 
stability criteria equivalence number that  is independent 
of the problem type. The central difference scheme is 
more sensitive to the problem type and could only be 
represented by an equation through regressing stability 
criteria equivalent and )u. The variation in stability 
criteria equivalence for the central difference scheme is 
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Figure 4. The stability criteria equivalence and its variations 
with A~ for the six schemes. 
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Figure 5. The stability criteria equivalence variations for the 
different schemes and different values of ~1. 

too large to be captured in a single number, as in tile 
case of backward and foreword difference schemes. 

4. SUMMARY AND CONCLUSIONS 

The dynamic time step estimates were correlated 
with the stability criteria. A major observation was 
made during this correlation process that  the stability 
criterion is problem independent. It only changes with 
the mesh size and material property. However, the 
dynamic time step estimate changes for each problem 
boundary condition, as well as mesh size and material 
properties. These later characteristics were captured by 
the smallest eigenvalue ()~1). Therefore, any particular 
correlation between the stability criteria and the time 
step estimates changes with the problem being solved. 
Regression fit of the two time step estimates for various 
problems were presented. 

Compared to the other schemes, the central difference 
scheme showed large sensitivity in the stability criteria 
equivalence corresponding to different problems and was 
proven to be more accurate. 

This analysis also revealed that  a non-oscillation cri- 
terion, such as the Froude number, is very conservative. 
It was originally designed for the conditionally stable 
explicit schemes [1]. It has been widely used to estimate 
the time step for all other schemes, including the un- 
conditionally stable schemes. Furthermore, it could be 
computationally very inefficient for an accurate scheme 
such as central difference. The stability criteria could 
be used for the forward or backward difference schemes 
where it would still be slightly conservative. There is 
experimental evidence that  Euler's scheme is always ac- 
curate when its stability requirements are satisfied [8]. 
On the other hand, the backward difference schemes are 
not accurate for a time step above those of tile Euler's 
stability criteria. 
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